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CONSTANT VERTICAL, ACCELERATION FOR THIN SWEPTBACK

TAPERED WINGS WITH STREAMWISE TIPS

SUPERSONIC LEADING AND TRAILING EDGES

By Isabella J. Cole and Kenneth Margolis
STMMARY

On the basis of a solution to the linearized time-deperident wave
equation, the nondimensionsl 1ift derivative QL& and the corresponding

pitching-moment derivative Cm& resulting from constant vertical sccel-

eration (that is, linear varistion of angle of attack with time) are
evaluated for =z family of thin sweptback tapered wings with streamwise
tips traveling at supersonic speeds.

The analysis is applicable at those speeds for which the wing leading
and traillng edges are both supersonic, provided that the Mach lines from
the wing apex intersect the tralling edge and that the Mach line from the
leading edge of one tip does not intersect the remote half-wing. Use is
mede of a previocus investigation in extending the range of applicability
- to Include cases for which the Mach lines from the wing apex Intersect

the tips.

»

Results of the analysis are given in the form of design charts for
the stebility derivatives CL& and Cm& from which fairly rapid estima-

tions of the derivatives can be made for given values of Mach number,
aspect ratio, leading-edge sweepback, and taper ratio. For iliustrative
purposes, some chordwise pressure distributions, spanwlse pressure dis-
tributions, span load distributions, and variations of the stability
derivatives CL& end Cps Wwith several parsmeters are also included.

Some results of the present investigation are combined with previous cal-
culations availsble for the steady-pitching derivative Cmq to indicate

the variations of the totel pitching-moment derivative Cmq + Cm& with

~ wing geometry and Mach number; these calculations are epplicable to slowly
(first-order frequency) oscillating wings.
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INTRODUCTION

The development of the linearized supersonic-flow theory has allowed
the evaluation of most of the important stebility derivatives for a variety
of isolated wing shapes. Recently, attention has been focused on the thin
sweptback tapered wing with side edges parallel to the axis of wing sym-~
metry, that 1s, streamwise tips. Stability derivatives avallable for this
general plan form for a wide range of supersonic Mach numbers include the
1lift-curve slope CLG (refs. 1 to 3), the damping-in-roll derivative CZP

(refs. 1, 2, and k&), the lateral-force and yawing-moment derivatives due
to rolling Cy, eand Cny, (refs. 5 and 6), the static pitching-moment

derivative Cp, (refs. 7 and 8), the lift and pitching-moment derivatives
due to steady pitching Crq end Cing (refs. 7, 8, and 9), and the

rolling-moment-due~-to-sideslip derivative C (refs. 10 and 11). The
:

aforementioned derivatives, all of which result from "steady state"
motions, are available for wings with either subsonlc or supersonic -
leading edges.

Two dérivatives resulting from an unsteady state or time-dependent
motion are Crs and Cpg, the 1lift and pitching-moment derivatives,

respectively, due to a linear angle-of-attack variation with time (the
motion is more commonly termed constant vertical acceleration). Inasmuch
as the sums CLq + Crg and Cmq + Cpg predict the total 1ift and

pitching-moment derivatives generated by a slowly (first-order frequency)
oscilleting surface, calculation of the & derivatives corresponding to
those already avallable for steady pitching velocity g are in order.

A previous investigation (ref. 12) treats the subsonic-leading-edge con-
dition; the present paper extends the range of Mach nunber to include
the supersonic-~leading-edge congdition.

Computational results are presented in the form of design charts
covering the practical range of wing-geometry parameters and Mach number
from which fairly rapld estimates of the derivatives may be obtained.

For illustrative purposes, several chordwise and spanwise pressure distri-
butions, span load distributions, and variations of the derivatives CL&,

Cng s and. the sum Cmq + Cpg with several parameters are also presented.
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SYMBOLS
X,¥,2 Cartesian coordinates; x-axis parallel to free-stream direction
(see fig. 2)

v free-stream velocity

density of air
M free-stream Mach number
B cotangent of Mach angle, M2 -1
K Mach angle, cot_lB
b wing span
Cyp root chord

2e. (A + N+ 1)

ol

mean aerodynamic chord,

3(N + 1)

A taper ratio, Tip chord/Root chord
A aspect ratio, ———EE————-= b2

cepr(1 + A) S
S wing ares
A angle of sweep (see fig. 1)
m= cot Myp
k_____cotl\f_EE: _ AB(1 + )

cot Ag AB(1 + A) - bmB(1 - A)

4 distance between wing apex and center of gravity; positive when
center of gravlty 1s rearward of the wing apex

a angle of attack

t time
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rate of change of angle of attack with time, da/dt; posi-
tive & indicates downward acceleration

steady pitching velocity about y-axis; positive as shown in
figure 2

difference in pressure due to constant vertical acceleration
between upper and lower surfaces; positive upward

difference in pressure due to unilt angle of attack between
upper and lower surfaces; positive upward

difference in pressure due to unit pitching velocity about the

y-axis between upper and lower surfaces; positive upward
pressure-difference coefficient due to constant vertical accel-
Jary

1l 2
=pV
2p

eration,

perturbation veloclty potential due to constant vertical accel-
eration, evaluated on upper surface of wing

perturbation velocity potential due to unit angle of attack,
evaluated on upper surface of wing

verturbation velocity potential due to unit pitching velocity
ebout y-axis, evaluated on upper surface of wing

spanwlse distribution of circulation due to constant vertical
acceleration

1ift

pitching moment; positive as indiceted In figure 2

1ift coefficilent, N
—ﬁVES
2

pitching-moment coefficient, M
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Cp. = égm
Mo da /a—>0
P
2V/q—>0
oCm\
Cn ={ =2
Mg qE
o=
2V/q—0
CLg, -( =
2V/ &—>0
oCn
Chne = —
" aE
2V/a—0
Subscripts:
TE trailing edge
LE leading edge
1,2 components used in breskdown of results

All angles are measured in radians unless otherwise Indicated.

ANALYSIS
Scope
The types of wings analyzed in the present paper are sketched in

figure 1. These wings have vanishingly small thickness, are uncambered,
and heve arbitrary taper ratio (0 to 1) with tips parallel to the axis



6 NACA TN 3196

of wing symmetry (streamwise tips). The leading edge 1s swept back,
although the trailing edge may be swept back or swept forward. Actually,
certain results <CL&) of the present investigetion are directly applicable

to wings with sweptforward leading edges in view of the reversibillity
theorem (see, for exemple, ref. 13).

The anelysis is carried out within the framework of the linearized
theory and the results are thus subJject to the ususl restrictions and
limitatlons imposed by such simplification. The mathematical derivations
are applicable for combinations of wing plan form end Mach number that
satisfy the following conditions: (1) the Mach lines from the wing apex
intersect the trailing edge, (2) the treiling edge is supersonic, and
(3) the Mach line originating at the leading edge of one wing tip does
not intersect the remote half-wing. Use is made of the sonic~leading-
edge results glven in reference 12 and of the span load distributions
presented in reference 14 to enable the calculation of the derivatives
CL& and Cm& for cases where the Mach lines from the wing spex lnfer-

sect the tips. Inasmuch as the third restriction is a minor one that is
applicable 1n the current Investigation to wings of very low aspect ratio
only, the computational results presented hérein apply, In general, at
speeds for which the wlng leadling and traillng edges are both supersonic.

Orlentation of the wing with respect to a system of body axes used
in the analysis is shown in figure 2(a); all derivations are carried out
with respect to this reference system unless otherwise noted. Design
curves for the derivatlives are presented relative to a system of principal
body exes with the center-of-gravity position assumed to be at the wing
apex as shown in figure 2(b). These results are also valid in a system
of stability axes (fig. 2(c)) for small angles of attack (see, for example,
table I of ref. 12). A formula 1s included which permits transfer of the
given results to those applicable for an arbitrary center-of-gravity loca-
tion (fig. 2(4)).

In addition to calculatlons for the derivatives CL& and Cm&,

tabulations of the veloclty-potential and pressure-~dlstribution formulas
are included in the present paper. For 1llustrative purposes several
chordwise and spanwise pressure distributions, span load distributions,
and veristions of the derivatiwves with wing-geometry parameters and Mach
number are presented. The results of the present paper are also combined
with those availeble for steady pitching motion to indicate the varia-
tion of the sum Cmq + Cm& wlth several paresmeters for a given static-

mergin condition.
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Derivation of Equations

On the basis of a first-order frequency solution to the linearized
time-dependent wave equation for supersonic flow, expressions for the
time~-dependent perturbation velocity potential and the 1ifting pressure
(evaluated at time £ = O) for a wing accelerating downward at a posi-
tive angle of attack &t may be written as follows (see ref. 15 and
eqs. (12) and (13) of ref. 16):

¢ = &E—i Po=1 + (’0 - %{—22{;)%;;’ (1)

where ¢q=1 and (AP)q;l are the perturbation velocity potential (evalu-

ated on the upper surface) and the lifting pressure, respectively, due
to unit (positive) steady pitching velocity about the y-axis and where
¢a=l and (AP)a=l are, analogously, the perturbation velocity potential

end the 1lifting pressure, respectively, due to unit (positive) angle of
attack.

From the results of previous investigations (ref. 2 for ACP and

¢ contributed by o« and ref. 8 for AC, and @ contributed by q)

dealing with the plan form and speed range considered herein, expressions
for the potentials and lifting pressures appearing on the right-hand
sides of equations (1) end (2) are readily obtained. Thus, in accordance
with equations (1) and (2) the velocity potentiml ¢ and lifting pres-
sure AP for the & motion mgy be tebulated; these results are pre-
sented in tables I and II. (For convenience, the pressures in table II
are given in coefficient form.)

Although the forces and moments may be obtained by appropriate
straightforward integrations of the formulas presented in tables I and IT,
an alternate and less time-consuming approach has been utilized. Upon
elementary integrations of equation (2), expressions for the 1ift and
pitching moment msy be conveniently written in derivative form as follows:

b/2
B® B2 B2sE Y v/ xy YV
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2 2 pr/2 pxmp  (2P)
Crng, = Mz Omg + guaf f xE % ax oy
82522V -p/2Y x5 1ove
2

b/2
5 _ [" [ o ford o oy (5

2552 v
B28E2 Y -b/2 Ix

All stability derivatives appearing in equations (3) and (4) and
elsewhere 1n the text are measured in a system of principal body axes
with the center of gravity located at the wing apex. (See fig. 2(b)).
The formulas for @ .q, (AP),.1, and the variable x are expressed

with respect to the system of axes used in the analysis (fig. 2(a)).

Integration by perts of the middle term of equation (4), utiliza-
tilon of the relationship

o Hom (5)
}_ w2 vV ox
2

and combinstion of like terms yields the following expression for Cpgs:

8 (M2 b/2 *Po=1
E(Eé”)f-b/z% v ©

For convenience, equation (3) may be expressed as follows:

2
ore = B rd), - Z(ene), @
where

(CLOL) = Oy + mg (8)
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and
b/2 pxpg ¢
CONT-Y N ol ax oy )
-b/2Yxzmy ¥
In an analogous manner, equation (6) may be expressed as follows:
= 14_2 hd_e .
Crg, = - (cm&)l + (132 + 1) (cmm)2 (10)
where
b/2 x2¢ __|x1E
(Cm&) = Cmq + _§_f o=l dy (11)
= s Vn/2 YV ixg
and

_ 8 b/2 x¢cc=l
(Cmd)z - 555\/Cb/2 J[KTE v = & (12)

XLE

Equations and charts for the stability derivatives Cp, CLq,
and. Cmq are presented in reference 8 for the wing plan form and Mach

number range considered in the present paper. Thus, only the expressions
for (CLd)2 (eq. (9)), (Cmd)e (eq. (12)), and the integral term of

(Cm&J (eq. (11)) require derivation. The results given in reference 2
1

for the velocity potential due to angle of attack were utilized in
carrying out the required integrations. Appropriate combination of com-
ponents, in accordance with equations (7) and (10), will then yield closed-
form formulas for the derivatives Crg and Cpg- Computations based on

these closed-form analytical expressions have been carried out utilizing,
to a great extent, automatic computing facilities. (The final formulas
themselves are not reproduced herein because of their rather excessive
length. The numerical results are believed to be sufficiently detailed
to obviate the need for additional calculations.)
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RESULTS AND DISCUSSION

The type of 1lifting pressure distributlon and of span load distribu-~ -
tion obtained over some typical wings for the motion considered is of -
interest. Some 1llustrative examples of the chordwise and spanwise lifting
pressure distributions, calculated by use of table II, are presented in .
figures 3 and 4; results for the spanwise Ioading (expressed in terms of -
the spanwise distribution of circulation) were obtained from reference 14

and are presented in figure 5.

The results of the detailed computations for Crg are presented in
figures 6 to 10 and those for Cmg 1in figures 11 to 15. The data are

shown for a range of taper ratio from O to 1.0 and for a range of the
aspect-ratio parameter AB from 3 to 20 (curves for AB = 2 are included
for the A = 1.0 cases). The range of leading-~edge sweepback angle is
included in values of the parameter cot=1Bm from 0° to 45°. For con~ .
venience, the relationship and correspondence between the parameters -

cot=1Bm and Bm sare shown in figure 16. S -

The dashed parts of the design curves (figs. & to 15) do not repre-
sent actual calculations, because these regions correspond to the condi-
tion where the Mach lines from the wing apex intersect the tips. However, B}
calculations were made for the sonic-leading-edge condition (using ref. 12)
and the curves were extended by means of dashed lines to these calculated
end points. The dashed extensions should yield results that are in very
close agreement with the true linearized~theory values for most cases. .
This agreement may be verified for the derivative CLy Dby eppropriate -

integration (graphical) of the span-load curves presented in reference 1k. a

For use 1n locating the desired design-chart data, an index to fig-
ures 6 to 15 is presented in tables IITI and IV. The derivatives presented LI
in these figures are measured relative to a system of principal body axes
with moments teken about a center-of-gravity location assumed to be at
the wing apex. For arbitrary center-of-gravity locations, the given
results may be directly applied in the following manner:

(CLd)arbitrary C8e - (CLd)c,g_ at (13)
wing apex - -
= 3 d
(Cmoz)c.g. at o (Cm&‘)c.g. at * E(CL&)c.g. at (14)
distance 4 wing apex wing apex -~

from wing apex

where d 1is positive vwhen the center of gravity 1s rearward of the wing
apex.
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It is sometimes convenient to express the distance d in terms of
the static margin, where static margin i1s defined as the distance,
expressed in percent €, between the center of gravity and the center of
pressure due to angle of attack (usually termed the aerodynamic center),
and is considered positive when the center of gravity is forwerd of the
aerodynamic center. Thus, the parsmeter & may be replaced by the equation

d = Distance between wing apex and aerodynamic center -~ Static margin

or

~Cp. ¢
d= 22 _ static margin (15)

(Design charts for the derivatives Cmm and qu for the plan form and
Mach number range considered in the present paper are presented in ref. 8.)

The results calculated herein are also directly spplicable to a
system of stability axes (fig. 2(c)), inasmuch as for small angles of
attack there is little change in the derivative Crg and no change in

the derivative Cm&. The results for CL& may also be applied to plan

forms with "reverse" geometry because, as shown in reference 13, the
total 1lift remains unchanged when the flow is reversed. (The distribu-
tion of 1lift, of course, is not invariant with flow direction.)

Some illustrative variations of the stability derivatives with aspect
ratio, Mach number, leading-edge sweepback, and taper ratio are presented
in figures 17 and 18. Filgure 19 presents some variations of the total
pltching-moment derivative Cmq + Cpg with the aforementioned parameters;

the results are appliceble to slowly (first-order frequency) oscillating
wings. The required data for Cmq were obtained from reference 8.

CONCLUDING REMARKS

On the basis oft a solution to the linearized time-dependent wave
equation, the nondimensional 1ift derivative Crg and the corresponding

pitching-moment derivative Cmy resulting from constant vertical acceler-

ation have been evaluated for a family of thin sweptback tapered wings
with streamwise tips traveling at supersonic speeds. The analysis is
appliceble, in general, at Mach numbers for which the wing leading and
trailing edges are both supersonic.
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Computational resulits are presented in the form of generalilzed
design curves which permit fairly rapid estimations of the stability
derivatives ch and Cm& for broad ranges of the parameters aspect

ratio, taper ratio, and leading-edge sweepback. TFor illustrative pur-f
poses, several chordwise pressure distributions, spanwise pressure dis-
tributions, span load distributions, and variations of the derivatives
with wing-geometry parameters and Mach number are also shown.

Results presented herein for the & motion may be directly added
to those.already available for the steady pitching motion to enable the
determination of the total 1ift and pltching-moment derivatives generated
by & slowly (first-order frequency) oscillating wing. In order to illus-
trate this gppliceation, some varistions of the pitching-moment derivative
with wing geometry and Mach number are presented.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 7, 1954.
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TABLE I.- FORMULAS FOR VELOCITY POTENTIAL DISTRIBUIION DUE TO CONSTART VERTICAL ACCELERATION

(mkﬁ::ch) Formle for ¢
Pa> 1
|mex] 2 1
hBx
Conditions BIIAZZJ.+7\)Z.'I.+B:1)
> _ ¥ABn
-~ (L + A)(Ba - 2)
T &ox - 7} |y o Wom(omx -
22 - 1| 2(F%a? - 1)
— <& ly (m-y)cos'lﬂ+(u+y)aou‘lx+
JE2? - 2 Bux - ¥) B{m + ¥)
bal
¥on \/f_l— 2 .1x+32lw ..1x-32ny
—_nm - 1)(x2 - B22) - B2(nx + y)“cas - B(mx - ¥)%c0s
232(B2n2-1)|: mx + y) =T nx - y)
& vfu-y)oos'l“'b(m"'l)”'(ZB'“']')-r 'ﬁ:-zy)(nn+1)|:a;(x+ny)-h(m+1]}+
VB2 - 1 ™oy
IIT z(ﬁe-l){hw(zhn-l)+'b(2-Bl)(Bl+l)-nz(¥+:h)‘l(b a)(h+1)@(:+m)_b(h+g _
(xx - y)zwg-.\. mx - b(Bm + 1) + y(z& + 1)})
™ Z(:um-:)
Ba=]l
Condttions ¢ [Pkl 21
~— Bz o2
T+
2aVa? -2 43
g B G 552)
I N (P T e )
B I_ =°
I I l:k-l;l
< Bag b
1+ A
<
gl Wor
R P
& v X coslX=Fo ¥ +V’(‘b—zvf)(22+23y-m] +
/B VB x
hnd
“ili__ﬂv-ﬂb-x)\f(b-zvr)(&+m-ﬂb)-&eos‘lx—"-%*ﬂ]
P \B

15
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TABLE IIL.- FORMULAS FOR LIFTING PRESSURE DISTRIBUTION DUE TO CONSTANT VERTICAL ACCELERATION

(aezag;:: ch) Formula for &p
Ba> 1
[Bmd 21
BAR — 4Bm
Conditions (1 + A2 + Ba)
= BAZ — MABR__
e ~ {1+ A){Ba - 2}
1 _ halmx -~ y)(a? + 1) -
v(5%m? - J.)3/2 i
_‘“"__%42.. 2@ ~ B252) (3% - 1) -
VEPx(B%2 - 1)7/2
IX
B2(n? +1) l(_—mx + y)cos-l ;(:’m o + (mx -~ y)coa-l ;(—;xlf@ﬁ}
_M—/{:E(Bamz-m- 1) —n]\/(b - 2y)(Ba + 1) Bu(x + By) - b(Bm + 1] -
3/2
- VB (B%? - 1)
Blmx - y) (w2 + 1)cos™t T = b{Ba ;:zl-). ; y{eB + 1)}
v |S @im-n
Ba=1
IBe)z 1
Conditions
T~ .

: 8 heee - ) - 302 - 383

5vESe VA2 - 222 -
- A\/——ME?(&:-R+ 118y) - 12(B.v+=§f
YB3y x + By

Bu = «

I 11 Conditions 4 [Buk| 2 1

< ¥
B’LZ:|.+7\

bd

ki —
g e

II

Vl;x 35/2 \/(b - 2y)(2x + 2By - Bb) - x cos™t 5#:@%[
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TABLE III.- INDEX TO DESIGN CHARTS FOR BCr,
M2 1
- oo, - (o),
Cﬁgﬁ:- A JAB coze:LBm, Bm Figure |Page Cg‘:ﬁ:' A |aB coge;Bm, Bm |Figure |Page
B(Cr.» 0 | 3118.h to 45| 3 to 1] 6(a) | 25 ||B(Cy..) [0.75] 3| 0 to 45 |= to 1] 9(a)
(re)y Bl Otol5|wto (I'U-)l i 34
5 5 l
6 J : :
8 9(1)
8 6(p) | 26 8 ?
12 l 12 l l
v 20 \ v v 20
B{Cye 3/18.% to k5| 3 to 1] 6(c) | 2T ||B(Cy.. 3 9(c) 6
(CI“>2 b otol5|atol (L"')a i 3
5 5
6 6
8 8
12 12
v 20 y v 4 v |20 \ N
). [0.25] 3{3.8L to 4515 to 1| T(a) | 28 |BfCy.). [L.00]| 2 10{=a)
X %ra)y b 0 tol5|etol (ra)y 3 A
5 L
6 5
8 v v 6 W v
8 7(b) |29 6 0(p) | 38
12 l 8
v 20 N ‘J. 12
'3 20 W
B{CL& . 15; 3.81 to ts 15 to 1| T(e) [ 30 (
O to b5| = to 1 B(Cr.« 2 10(c) | 39
5 (‘}La)a 3
6 b
8 5
12 6
W v |20 y v v \4 8
i2
B(Cld)l 0.50 Z 0 to i5|w to 1} &(a) |31 ¥ 20 v y v \
5
6 N ¥y
6 8(p) | 32
8
12
v 20 v \
B(Cy.. 8 33
(Cra),| | |2 (e)
5
6
8
12
20 b N \'’s v
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TABLE IV.~ INDEX TO DESIGN CHARTS FOR BCgy

[chd = ‘]:—: B(C‘m&)l + (’B“—: + 1)1.3(0,,,&)2

Gompo= | |aB °°§;;Bm’ Bun  |Figure |Pege °n°mP°ent" A |aB °°ge;m’ Bu  {Pigure |Page
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(a) Sweptback trailing edge. Positive Apm; positive k.
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(b) Sweptforward trailing edge. Negative Apg; negative k.

Figure 1.- Types of wlngs analyzed.
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(a) Body axes used in analysis.

Y

(b) Principal body axes with center of gravity at wing apex.

Figure 2.- Systems of axes and associated data.
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(c) Stebility axes with center of gravity at wing apex.

(&) Stability and principal body axes with center of gravity located at
a distance 4 from wing apex.

Figure 2.~ Concluded.
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Figure 6.~ Continued.
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(c) 3(01&)2. A= 0.79; AB = 3 0 20; cot™1Bm
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to condition where Mach lines from wing apex intersect tips) to
calculated end points.
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Figure 10.- Concluded.
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Figure 15.-~ Continued.
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(a) Variation with Mach mumber.

Figure 17.- Some illustrative varistions of stability derivative CL&

with Mach nunber, aspect ratio, leading-edge sweepback, and taper
ratio. Results valid for both principal body and stability systems
of axes.
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(b) Variastion with aspect ratio.

Figure 1T7.~ Continued.
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Figure 17.- Continued.
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Figure 17.- Concluded.
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(a) Variation with Mach number.

Figure 18.- Some illustrative variations of stability derivative qﬂi

with Mach muber, aspect ratio, leading-edge sweepback, and taper
ratio. Results valid for both principal body and stability systems
of axes. Static mergin, 0.05¢.
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(b) Variation with aspect ratio.

Figure 18.- Continued.
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(c) Variation with leading-edge sweepback.

Figure 18.~ Continued.
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(d) Variation with taper ratio.

Figure 18.- Concluded.
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(a) Variation with Mach number.

Flgure 19.- Some illustrative variations of total pitching-moment deriva-
tive Cmq_ + Cmg s &enerated by a slowly oscillating wing, with Mach

number, aspect ratio, leading-edge sweepback, and taper ratio. Results
valid for both principal body and stability systems of axes. Static
margin, 0.05¢.
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(c) Variastion with leading-edge sweepback.

Figure 19.- Continued.
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Figure 19.-~ Concluded.
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